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ABSTRACT
Recently we proposed a general, ensemble-based feature engineer-
ing wrapper (FEW) that was paired with a number of machine
learning methods to solve regression problems. Here, we adapt
FEW for supervised classi�cation and perform a thorough analysis
of �tness and survival methods within this framework. Our tests
demonstrate that two �tness metrics, one introduced as an adapta-
tion of the silhoue�e score, outperform the more commonly used
Fisher criterion. We analyze survival methods and demonstrate that
ϵ-lexicase survival works best across our test problems, followed
by random survival which outperforms both tournament and deter-
ministic crowding. We conduct a benchmark comparison to several
classi�cation methods using a large set of problems and show that
FEW can improve the best classi�er performance in several cases.
We show that FEW generates consistent, meaningful features for a
biomedical problem with di�erent ML pairings.
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1 INTRODUCTION
When traditional genetic programming (GP) is applied to classi-
�cation and/or regression, individual programs assume the roles
of feature selection, transformation, and model prediction, and
are evaluated for their ability to make accurate estimations and/or
predictions. �e �exibility of evolving the structure and parame-
ters of a model comes with a heavy computational cost that can
be mitigated if one instead uses a fast (e.g. polynomial-time) ma-
chine learning (ML) method to optimize the parameters of a GP
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Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4920-8/17/07. . .$15.00
DOI: 10.1145/3071178/3071215

model with respect to an objective function (for example, least
squares error minimization with linear regression). With this in
mind, many variants of GP have been proposed that embed linear
regression and/or local search in each program, leading to be�er
models [2, 12, 13, 15]. �e high-level takeaway from the success
of methods that hybridize GP is that it is best to focus the compu-
tational e�ort of GP on the parts of the modeling process that are
known to be NP-hard, namely the tasks of feature selection [8] and
construction [14].

�e task of feature construction, also known as feature engineer-
ing or representation learning, is well-motivated since the central
factor a�ecting the quality of a model derived from ML is the abil-
ity of the data representation to facilitate learning [4]. �is paper
focuses on the supervised classi�cation task, for which the goal is
to �nd a mapping ŷ(x) : Rd → Y that associates the vector of at-
tributes x ∈ Rd withk class labels from the setY = {1 . . . k} using
N paired examples T = {(xi ,yi )}Ni=1. �e goal of feature engineer-
ing is to �nd a new representation of x via a P-dimensional feature
mapping Φ(x) : Rd → RP , such that a classi�er ŷ(Φ(x)) : RP → Y
more accurately classi�es samples than ŷ(x).

GP-based approaches to representation learning include evolv-
ing single features for decision trees (DT) [21], or coupling ML
with each program [14, 24, 30]. Recent work [3, 7] has advocated
what we refer to as an “ensemble” approach which treats the entire
GP population as Φ(x), with each program representing a trans-
formation of the form ϕ(x) : Rd → R. �ese proposed methods
feed the population output Φ(x) = [ϕ1(x) . . . ϕP (x)] into a linear
regression model to make predictions.

�e ML-speci�c nature of these previous approaches motivates
our development of the more general feature engineering wrapper
(FEW) method1, which is a wrapper-based ensemble method of
feature engineering with GP [16]. Unlike previous approaches, FEW
allows any learning algorithm in scikit-learn format [22] to be used
for estimation. FEW has been demonstrated for use in regression
with several ML pairings, including Lasso [27], linear and nonlinear
support vector regression, DT, and k-nearest neighbors (KNN).
Central to its ability to evolve features in a single population is the
introduction of ϵ-lexicase survival which produces uncorrelated
population behavior.

�e wrapper-based ensemble approach to GP is under-studied
and presents new challenges from an evolutionary computation
standpoint, namely the need for individuals in the population to
complement each other in facilitating the learning of the ML method
with which they are paired. Our goal in this paper is to use FEW as
1Available from h�ps://lacava.github.io/few and via the Python Package Index: h�ps:
//pypi.python.org/pypi/FEW
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a test bed for evaluating the ability of several survival and �tness
techniques in this new framework for supervised classi�cation. In
addition, whereas previously FEW was demonstrated in side-by-
side comparisons with default ML methods, here we more robustly
analyze whether FEW can, in general, produce be�er models than
existing ML techniques when hyper-parameter optimization of
every method is considered.

�is paper contains four main contributions. First, it presents a
much-needed analysis of �tness and survival methods for ensemble-
based representation learning with GP, which is currently lacking
in the �eld. Second, it focuses on the classi�cation task, which has
not been the focus of previous methods with this GP framework.
�ird, it presents robust comparisons of FEW to other ML methods,
including a previously proposed GP method that also focuses on
feature learning. As a �nal contribution we analyze a biomedical
problem for which FEW is able to correctly identify the nonlin-
ear, underlying structure of the data across ML pairings, thereby
showing the usefulness of learning readable data representations.

We pair FEW with several well-known classi�ers in our analysis:
logistic regression (LR), support vector classi�cation (SVC), KNN,
DT and random forests (RF). We present an overview of FEW in
Section 2 including a description of several �tness and survival
methods that are tested. We review related work more thoroughly
in Section 3, including distinguishing between wrapper and �lter
approaches as well as single, multiple, and ensemble representations
of features in GP. �e results of the experiments on FEW and its
comparison to other methods is shown in Section 5, with discussion
and conclusions following in Section 6.

2 METHODS
�e components of FEW are summarized in Figure 1. �e learning
process begins by ��ing the ML method to the original data. FEW
maintains an internal validation set to evaluate new models, which
guarantees that the returned model will have a cross-validation (CV)
�tness at least as good as the initial data representation can produce.
FEW then initializes a population of feature transformations, Φд(x),
seeded with the features from the initial ML model with non-zero
coe�cients. Each generation, a new ML model is trained on Φд(x)
to produce ŷ(Φд(x)).

�e selection step of FEW is the entry point for new information
from the ML method about the quality of the current representation.
Methods that admit `1 regularization (available in the scikit-learn
implementations of LR and SVC) or feature importance scores (DT
and RF) apply selective pressure to the GP population by elimi-
nating any individuals with a corresponding coe�cient or feature
importance of zero in the ML model. Feature importance for DT
and RF is measured using the Gini importance [5]. �us ML and
GP share the feature selection role. A�er selection, the remaining
individuals (Φд′(x) ⊆ Φд(x) in Figure 1) are used to produce P
o�spring, Φo (x), via sub-tree crossover and point mutation. In this
way FEW di�ers from previous ensemble representation learning
approaches [3, 20] in that it incorporates crossover for variation
instead of strict mutation.

�e �tness step (see Section 2.1) evaluates the ability of Φд′(x)
and Φo (x) to adequately distinguish between classes in T . �e
survival step in FEW (see Section 2.2) reduces the pool of parents

Initial ML

Selection

Variation 

Fitness

Survival

ML

Initialization

Figure 1: A diagram showing the main steps in FEW. Φд denotes
the starting population; Φд′ is the population a�er selection; Φo is
the o�spring produced by crossover and mutation; and Φд+1 is the
new population a�er conducting survival on Φд′ ,Φo .

and o�spring back to the original size (P ), and the surviving set
of transformations, Φд+1(x), is used at the beginning of the next
generation to �t a new ML model.

2.1 Fitness
We compare the three �tness metrics (Eqns. 1–3 below) in our ex-
perimental analysis in Section 4.1. In contrast to traditional GP, the
�tness of an engineered feature ϕ(x) must measure the individual’s
ability to separate data between classes rather than its predictive ca-
pacity, since ϕ is not itself a model. A simple approach to assessing
feature quality is to look at the coe�cient of determination using

R2(y,ϕ(x)) = 1 −
∑
i (yi − ϕ(xi ))2∑
i (yi − ȳ)2

(1)
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For binary classi�cation, R2 seems appropriate, since it only has
to capture the correlation of the feature with a change from 0 to 1.
However, for multiclass classi�cation, the R2 imposes an additional
constraint on the feature by rewarding it for increasing in the
direction of the class label values. For certain problems (e.g. one in
which the ordering of the class labels corresponds to a degree of
risk), this imposed �tness pressure may be warranted, but in the
general case we do not want to assume the order of the class labels,
nor the relative distance between them in a feature, is meaningful.
Instead, we want to reward features that separate samples from
di�erent classes and cluster samples within classes.

Other GP feature construction methods have used the Fisher
criterion [1, 10] for achieving such a measure. �e Fisher criterion
assigns �tness of a feature ϕ as

F =
∑
i, j ∈Y

|µi − µ j |√
σ 2
i + σ

2
j

(2)

where µ is the mean of ϕ(x) belonging to a class label, i.e. µi =
ϕ̄(x(|y = i)), and σi is the standard deviation. �e Fisher criterion
gives a measure of the average pairwise separation between, and
dispersion within, classes for ϕ. However, it does not provide
�ne-grained information about the distance of speci�c samples in
the transformation. In an a�empt to extract this information, we
include the silhoue�e score [23] in our comparisons. Like Eqn. 2, the
silhoue�e score assesses feature quality by combining the within-
class variance with the distance between neighboring classes. �us
it captures both the tightness of a cluster and its overlap with the
nearest cluster. �e silhoue�e score si for a single sample xi is
de�ned as

ai =
1
|xk |

∑
xj ∈xk

| |ϕ(xi ) − ϕ(xj )| |22

bi =
1
|xk ′ |

∑
xj′ ∈xk

′
| |ϕ(xi ) − ϕ(xj′)| |22

si =
bi − ai

max(ai ,bi )
(3)

Here, xk = x(|y = yi ) is the set of samples with class label yi , and
xk
′ is the set of samples in the next nearest class (according centroid

distance). �us Eq. (3) takes into account both the pairwise square
distances within a class and the separation of neighboring classes
from each other. Here the Euclidean distance metric is used. For
aggregate �tness of an engineered feature, the average silhoue�e
score over all samples, s̄ = 1

N
∑
si , is used.

2.2 Survival
Unlike typical populations in model-based GP, the surviving in-
dividuals in FEW are assessed together in an ML estimation, and
therefore bene�t from being chosen to work well together. In fact,
many ML pairings depend on low co-linearity between features,
including LR and SVC. We test four methods for achieving this coop-
eration: tournament survival (tournaments of size 2), deterministic
crowding, ϵ-lexicase survival, and random survival. Tournament
survival is agnostic to the population structure when selecting sur-
vivors, and simply picks the individual in the tournament with the
best �tness to survive. Meanwhile, deterministic crowding and

ϵ-lexicase survival are designed to promote feature diversity, which
should in�uence the ability of the population to e�ectively pro-
duce a representation for the ML training step. We include random
survival tests to control for the e�ect of unguided search.

Deterministic crowding [19] is a niching mechanism in which
o�spring compete only with the parent they are most similar to.
We de�ne similarity as the correlation (R2, Eqn. 1) between a child
and its o�spring. In the case of mutation, there is only one parent,
so no similarity comparison is necessary. Although traditionally
a steady state algorithm, its implementation here is generational.
Children take the place of their parent in the surviving population
if and only if they have a be�er �tness. �is algorithm produces
niches in the population which should maintain diverse features.
ϵ-lexicase survival is a new survival technique adapted from ϵ-

lexicase selection [17] for use in FEW. ϵ-lexicase selection is, in turn,
an adaptation of lexicase selection [11, 26] for continuous-valued
problems. Lexicase selection works by pressuring individuals in
the population to solve unique subsets of the training samples (i.e.
cases) and shi�ing selective pressure to cases that are the most
di�cult in terms of population performance. ϵ-lexicase survival
di�ers from ϵ-lexicase selection in that it removes the individuals
selected at each step from the remaining selection pool, and adds
them to the survivors for the next generation. Each iteration of
ϵ-lexicase survival proceeds as follows:
GetSurvivors(Φ, T) :
T′ ← T training cases
Φs ← ∅ survivors
for each parent selection:
S ← Φ − Φs initial pool
ϵ ← λ(et ) for t ∈ T get ϵ for each case
while |T′ | > 0 and |S | > 1: main loop
case← random choice from T′ pick a case
elite← best �tness in S on case determine elite
S ← n ∈ S if �tness(n) ≤ elite+ϵcase reduce pool
T′ ← T′− case reduce cases

Φs ← Φs ∪ random choice from S pick survivor
return Φs return survivors

In the routine above, λ(et ) ∈ RP is the median absolute deviation
of the �tnesses on case t ∈ T across the population.

3 RELATEDWORK
Feature construction has received considerable a�ention in GP,
with implementations falling into single feature, multiple feature
and ensemble categories. Single feature representations a�empt to
evolve a single solution that is an engineered feature as in [10, 21].
Multiple feature representations encode a candidate set of feature
transformations in each individual [14, 18, 24, 25], such that each in-
dividual is a multi-output estimate of Φ. In this case, a separate ML
model is trained on the outputs of each program, and the resulting
output is used to assign �tness to each individual. Ensembles are a
more recent approach [3, 7, 16, 20] designed to reduce the compu-
tational complexity of ��ing a model to each individual. Ensemble
approaches instead �t a single ML model to the output of the entire
population. �is ensemble-like approach treats each individual in
the population as single features ϕ, and treats the ensemble out-
put of the population as Φ. Among these ensemble methods, FEW
shares the most in common with evolutionary feature synthesis
(EFS) [3] in that it uses the more successful wrapper-based ap-
proach [14, 25] and incorporates feature selection information from
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Table 1: Tested settings for survival and �tness study.

Se�ing Values
Population size 10, 50, 100
Max depth 2,3
Fitness R2, silhoue�e
Survival tournament, deterministic crowding, ϵ -lexicase
ML LR, DT, KNN

the ML routine. Unlike FEW, EFS pairs exclusively with Lasso [27],
uses three population partitions, and does not incorporate crossover
between individuals. FEW is motivated by the hypotheses that 1)
the ML pairing is best treated like a hyper-parameter of the method,
and 2) that existing diversity-preserving selection methods can be
successfully adapted to the purposes of ensemble-based feature
survival. As a �nal note, previous work does not o�en consider
the e�ect of tuning the proposed algorithm or the ML approaches
to which is compared, which is a vital step in algorithm compar-
isons [6] and in the application of ML to real-world problems.

4 EXPERIMENTAL SETUP
We conduct two separate sets of experiments. �e �rst set described
in Section 4.1 is designed to compare the �tness and survival meth-
ods for FEW in combination with di�erent ML methods and hyper-
parameters. We use the results the �rst experiment to choose the
�tness and survival method for FEW in the second set of exper-
iments. �e second set of experiments, described in Section 4.2,
is a benchmark comparison of FEW to several ML methods on a
larger set of classi�cation problems. All the datasets used in the
comparison are freely available via the Penn Machine Learning
Benchmark repository2.

4.1 FEW comparisons
We tune the choice of �tness and survival methods by performing
an experimental analysis of FEW on the tuning problems in Table 3
using the parameters listed in Table 1.

4.2 Comparison to other methods
We evaluate FEW’s performance in comparison to six other ML
approaches: Gaussian naı̈ve Bayes (NB), LR, KNN, SVC, RF, and
M4GP [18], a multi-feature GP method derived from [24] that cou-
ples a multi-feature representation with a nearest centroid classi-
�er [28]. For more information on the implementations of NB, LR,
KNN, SVC, and RF, refer to [22]. �ese methods are evaluated on
20 classi�cation problems that vary in numbers of classes, samples
and features, as seen in Table 2. To ensure robust comparisons,
we include hyper-parameter optimization in the training phase for
each method. To do so, we do a grid search of the hyper-parameters
of each method (shown in Table 2), using 5-fold cross-validation on
the training set to choose the �nal parameters. �e model with the
best average cross validation accuracy on the training set is evalu-
ated on the test set. �is process is repeated for 30 shu�ed, 50/50
train/test splits of the data. In an a�empt to control for the di�erent
possible hyper-parameter combinations between the methods, we

2h�ps://github.com/EpistasisLab/penn-ml-benchmarks

Table 2: Experimental setup for the method comparisons. �e
hyper-parameters that were searched are shown on the right.

Method hyper-parameters

FEW Population (0.25d ,. . . ,3d ); ML (LR, KNN, RF, SVM);
output type (bool, �oat); max depth (2,3)

M4GP
Population size (250, 500, 1000); generations

(50,100,500,1000); selection method (tournament,
lexicase); max length (10, 25, 50, 100)

Gaussian Naı̈ve Bayes none

Logistic Regression Regularization coe�cient (0.001,…,100); penalty
(`1 ,`2 ,elastic net); epochs (5,10)

Support Vector Classi�er
Regularization coe�cient (0.01,…,100,‘auto’); γ (0.01,
10, 1000, ‘auto’); kernel (linear, sigmoid, radial basis

function)

Random Forest Classi�er
No. estimators (10, 100, 1000); minimum weight

fraction for leaf (0.0, 0.25, 0.5); max features (sqr t ,
loд2 , None); spli�ing criterion (entropy, gini)

K-Nearest Neighbor Classi�er K (1,…,50); weights (uniform, distance)

Table 3: Classi�cation data sets used in this paper for tuning (top)
and comparison to other methods (bottom). GMT stands for GA-
METES data sets, which are named according to number of epistatic
loci (w), number of attributes (a), noise fraction (n), and heterogene-
ity fraction (h).

Dataset Classes Samples Features
Tuning Problems

auto 5 202 25
calendarDOW 5 399 32
corral 2 160 6
new thyroid 3 215 5

Benchmark Problems
analcatdata authorship 4 841 70
analcatdata cyyoung8092 2 97 10
coil2000 2 9822 85
GMT 2w-1000a-0.4h 2 1600 1000
GMT 2w-20a-0.4h 2 1600 20
german 2 1000 20
Hill Valley with noise 2 1212 100
Hill Valley without noise 2 1212 100
magic 2 19020 10
mfeat fourier 10 2000 76
mfeat pixel 10 2000 240
molecular biology promoters 2 106 58
monk2 2 601 6
optdigits 10 5620 64
parity5+5 2 1124 10
schizo 2 340 14
texture 11 5500 40
vowel 11 990 13
xd6 2 973 9
yeast 9 1479 8

limited each grid search to a maximum of 100 combinations of
hyper-parameter se�ings during training.

�e hyper-parameters considered for FEW (see Table 2) include
the population size, the ML method. expressed as a function of the
number of features in the data, the output type of the features (�oat
or bool), and max feature depth. Floating point outputs use the
operator set {+, −, ∗, /, sin, cos , exp, loд,

√
(), ()2, ()3} and boolean

outputs add {AND, OR, XOR, !, ==, >, ≥, <, ≤}. It is important to note
that the tuning of the ML method is not considered when paired
with FEW. As a result, this experiment compares the relative e�ects
of learning a representation for a default ML method to tuning the
hyper-parameters of those methods.

https://github.com/EpistasisLab/penn-ml-benchmarks


Ensemble representation learning: an analysis of fitness and survival for wrapper-based genetic programming methodsGECCO ’17, July 15–19, 2017, Berlin, Germany

5 RESULTS
�e �tness and survival methods are compared on the tuning
datasets in Figures 2 and 3, respectively. �e �tness metric compar-
isons yield unexpected results. �e Fisher criterion is outperformed
by both R2 and the silhoue�e score in 3 out of 4 problems (p <
4.8e-7). Surprisingly we �nd that the silhoue�e score does not
outperform R2 as a �tness metric either; across problems and ML
pairings, there is no signi�cant di�erence in performance aside
from new-thyroid. �is is surprising given our hypothesis in Sec-
tion 2.1 that the class label assumptions implicit in the R2 would
make it less suited to classi�cation with multiple labels. According
to this evidence in conjunction with the lower complexity of R2, we
opt to use R2 as the �tness criterion for the benchmark comparison.

We �nd that ϵ-lexicase survival produces more accurate classi-
�ers than deterministic crowding, tournament and random survival
across problems and ML pairings. It is signi�cantly correlated
with higher test accuracy according to a t-test (p < 2e-16) and sig-
ni�cantly outperforms tournament (p < 0.002) and deterministic
crowding (p < 2.4e-7) according to all pairwise Wilcoxon tests,
correcting for multiple comparisons. ϵ-lexicase survival also out-
performs random survival on auto (p = 4.4e-8) and new-thyroid
(p < 2e-16), and ties it on the other two problems (for calendar-
DOW, p =0.094). Random survival performs strongly compared to
tournament and deterministic crowding survival, outperforming
those methods on 3 out of 4 problems. �e results motivate our use
of ϵ-lexicase survival in the benchmark comparison.

�e test set accuracies of the 7 method comparisons on the bench-
mark datasets are shown in boxplot form in Figure 4 and the mean
rankings are summarized in Figure 5. Across problems, perfor-
mance varies, generally with RF, SVC, M4GP or FEW producing
the highest test accuracy. Whereas FEW generally does well on
the problems for which M4GP excels, FEW also does well in cases
where M4GP underperforms, which is likely due to FEW’s ability
to tune the ML method with which it is paired. �ree problems
stand out for being particularly amenable to feature engineering:
GMT 2w-20a-0.4h, Hill Valley without noise, and parity5+5. �ese
three problems are well-known for containing strong interactions
between features, which helps explain the observed increase in
performance from FEW. In terms of mean rankings across prob-
lems, FEW generates the best classi�ers among the methods tested,
followed closely by SVC and RF. A Friedman test of the rankings
with post-hoc analysis reveals RF, SVC, and FEW signi�cantly out-
perform NB and LR across all problems (p <0.039).

As expected, the computation time of FEW is higher than other
ML methods (see Figure 6) due to its wrapper-based approach.
�e quicker performance of M4GP may be explained by its c++
implementation compared to FEW’s Python implementation, as
well as M4GP’s use of a consistently fast ML pairing.

We show models generated with single runs of FEW on GMT
2w-20a-0.4h in Table 4 using DT and LR. �is genetics problem
is generated using the GAMETES simulation tool [29]. It consists
of 20 a�ributes, 18 of which are noise, and two of which interact
epistatically, meaning they must be considered together to infer the
correct class (the labels contain noise as well). �e models correctly
identify the interaction between features 18 and 19. For this problem
FEW’s transformation provides the essential knowledge required
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Figure 2: A comparison of �tness de�nitions on the tuning data
sets. Each subplot presents a di�erent data set; the x-axis corre-
sponds to the paired learner (DT, LR, KNN) and the boxplots rep-
resent the accuracy scores obtained with silhouette score (Eqn.3) or
R2 (Eqn. 1).
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Figure 3: A comparison of survival algorithms on the tuning data
sets. Each subplot presents a di�erent data set; the x-axis corre-
sponds to the paired learner (DT, LR, KNN) and the boxplots rep-
resent the accuracy scores using di�erent survival methods.

to solve this problem, whereas the ML approaches simply serve as
a discriminant function for processing the information presented
via the transformation.

6 DISCUSSION & CONCLUSION
Our results suggest that FEW is a useful technique for supervised
classi�cation problems. FEW performs the best on average among
the algorithms tested, which include optimized SVM, RF, KNN,
M4GP, LR and NB models. �is result provides evidence with these
ML methods that the data representation can in�uence algorithm
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Figure 4: Comparison of test set accuracy for various methods on the benchmark problems.
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Figure 6: Training time ofmethods over all of the benchmark prob-
lems.

Table 4: Example solutions to the GMT-2w-20a-40h problem using
decision tree and logistic regression pairings. FEW identi�es the
correct underlying epistatic interaction between features x18 and
x19 in both cases. �e �nal model is either a simple decision tree
split in order of the estimated importances or a logistic regression
model with four terms.

Decision Tree Model
Importance Feature
0.899 (x19 XOR x18)
0.084 (x19 < x18)
0.017 (

√
( |x8 |) >= cos(x18))

Logistic Regression Model
Coe�cient Feature
1.992 (x19 XOR x18)
1.433 (x18 > x19)
0.996 (exp(x9) XOR

√
( |x18 |))

0.102 (x4 < x11)

Performance Decision Tree Logistic Regression

Initial ML CV accuracy 0.487 0.473
Final model CV accuracy 0.763 0.803
Test accuracy 0.787 0.755
Runtime (s) 8.2 8.2

performance as much as, if not more than, the parameter se�ings
of those algorithms. Although it hasn’t been tested here, it is likely
that including hyper-parameter optimization of the ML methods
paired with FEW in the tuning step would show even greater gains
in performance over the baseline approach. FEW also performs
be�er than a multiple feature GP approach (M4GP) that uses a �xed
ML pairing.

Despite FEW’s runtime in these tests, a complexity analysis
suggests it is well-positioned for large datasets in comparison to
other feature construction techniques. Whereas techniques like
polynomial feature expansion scale poorly with the number of
features (O(dn ) for an n-degree polynomial) and techniques like
kernel transformations scale poorly with the numbers of samples
(O(N 2)) [9], FEW scales independently of the features in the dataset,
linearly with N , and quadratically with the population size. �ese
observations warrant further investigation with large datasets.
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[24] Sara Silva, Luis Muñoz, Leonardo Trujillo, Vijay Ingalalli, Mauro Castelli, and
Leonardo Vanneschi. 2015. Multiclass Classi�catin �rough Multidimensional
Clustering. In Genetic Programming �eory and Practice XIII. Vol. 13. Springer,
Ann Arbor, MI.

[25] Ma�hew G. Smith and Larry Bull. 2005. Genetic programming with a genetic
algorithm for feature construction and selection. Genetic Programming and
Evolvable Machines 6, 3 (2005), 265–281. h�p://link.springer.com/article/10.1007/
s10710-005-2988-7

[26] Lee Spector. 2012. Assessment of problem modality by di�erential performance
of lexicase selection in genetic programming: a preliminary report. In Proceedings
of the fourteenth international conference on Genetic and evolutionary computation
conference companion. 401–408. h�p://dl.acm.org/citation.cfm?id=2330846

[27] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288. h�p:
//www.jstor.org/stable/2346178

[28] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert
Chu. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene
expression. Proceedings of the National Academy of Sciences 99, 10 (May 2002),
6567–6572. DOI:h�p://dx.doi.org/10.1073/pnas.082099299

[29] Ryan J. Urbanowicz, Je� Kiralis, Nicholas A. Sinno�-Armstrong, Tamra Heber-
ling, Jonathan M. Fisher, and Jason H. Moore. 2012. GAMETES: a fast, direct
algorithm for generating pure, strict, epistatic models with random architectures.
BioData mining 5, 1 (2012), 1. h�ps://biodatamining.biomedcentral.com/articles/
10.1186/1756-0381-5-16
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